

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-18T0005-R1 Page (1) of (38)

TEST REPORT Part 15C & RSS-247 (Issue 2)

Equipment under test WISENET SMARTCAM

Model name SNH-P6415BN

Derivative model SNH-P6416BN, SNH-C6415BN,

SNH-C6415BNB, SNH-C6416BN,

SNH-C6416BNB

FCC ID NLMSNHP6415BN

IC 21482-SNHP6415BN

Applicant Hanwha Techwin Co., Ltd.

Manufacturer Hanwha Techwin(Tianjin) Co., Ltd

Hanwha Techwin Security Vietnam Co., Ltd.

D-TECH Co.,Ltd.

Date of test(s) $2017.12.26 \sim 2018.01.11$

Date of issue 2019.04.22

Issued to

Hanwha Techwin Co., Ltd.

6, Pangyo-ro 319 Beon-gil, Bundang-gu Seongnam-si,

Gyeonggi-do, 13488, Korea

Tel: +82-70-7147-8361/ Fax: +82-31-8108-3717

Issued by KES Co., Ltd.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si,

Gyeonggi-do, 14057, Korea

473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea

Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by :	Report approval by :
Lee	
Young-Jin Lee	Hyeon-Su, Jang
Test engineer	Technical manager

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (2) of (38)

Revision history

Revision	Date of issue	Test report No.	Description
-	2018.01.15	KES-RF-18T0005	Initial
R1	2019.04.22	KES-RF-18T0005-R1	Add derivation model and Manufacturer for SNH-P6415BN

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (3) of (38)

TABLE OF CONTENTS

1.	General in	nformation	4
	1.1.	EUT description	4
	1.2.	Test configuration	
	1.3.	Information about derivative model	5
	1.4.	Accessory information	
	1.5.	Software and Firmware description.	5
	1.6.	Measurement results explanation example	6
	1.7.	Measurement Uncertainty	
	1.8.	Frequency/channel operations	
2.	Summary	of tests	
3.		ts	
	3.1.	99% Occupied Bandwidth	8
	3.2.	6 dB bandwidth	10
	3.3.	Output power	12
	3.4.	Power spectral density	
	3.5.	Radiated restricted band and emissions	
	3.6	Conducted spurious emissions & band edge	
	3.7.	AC conducted emissions	
App	endix A.	Measurement equipment	
	endix B.	Test setup photos	

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (4) of (38)

1. General information

Applicant: Hanwha Techwin Co., Ltd.

Applicant address: 6, Pangyo-ro 319 Beon-gil, Bundang-gu Seongnam-si,

Gyeonggi-do, 13488, Korea

Test site: KES Co., Ltd.

Test site address: 3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si,

Gyeonggi-do, 14057, Korea

473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea

Test Facility FCC Accreditation Designation No.: KR0100, Registration No.: 444148

ISED Registration No.: 23298

FCC / IC rule part(s): 15.247 / RSS-247
FCC ID: NLMSNHP6415BN
IC Certification 21482-SNHP6415BN

Test device serial No.: Production Pre-production Engineering

1.1. EUT description

Equipment under test WISENET SMARTCAM

Frequency range $2 402 \text{ MHz} \sim 2 480 \text{ MHz} \text{ (LE)}$

 $2\ 412\ \text{MHz}\ \sim 2\ 462\ \text{MHz}\ (11b/g/n_HT20)$

2 422 MHz ~ 2 452 MHz (11n_HT40)

UNII-1 5 180 MHz \sim 5 240 MHz (11a/n HT20, 11ac VHT20)

5 190 MHz ~ 5 230 MHz (11n HT40, 11ac VHT40)

5 210 Mbz (11ac VHT80)

UNII-2A 5 260 Mb ~ 5 320 Mb (11a/n HT20, 11ac VHT20)

 $5~270~\text{MHz}~\sim 5~310~\text{MHz}~(11n_\text{HT40}~,\,11ac_\text{VHT40})$

5 290 Mtz (11ac_VHT80)

UNII-2C 5 500 Mb ~ 5 720 Mb (11a/n HT20, 11ac VHT20)

5 510 Mbz ~ 5 710 Mbz (11n HT40, 11ac VHT40)

 $5\ 530\ \text{MHz} \sim 5\ 690\ \text{MHz}$ (11ac VHT80)

UNII-3 5 745 MHz \sim 5 825 MHz (11a/n HT20, 11ac VHT20)

 $5.755~\text{MHz}\sim5.795~\text{MHz}$ (11n HT40, 11ac VHT40)

5 775 Mtz (11ac_VHT80)

Model: SNH-P6415BN Derivative model SNH-P6416BN

Modulation technique WIFI: DSSS, OFDM

BT: GFSK

Antenna specification Antenna type(2.4 @W WIFI): Chip antenna, Peak gain: 3.50 dBi

Antenna type(BT, 50 WIFI): Chip antenna, Peak gain: 3.94 dBi

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (5) of (38)

Power source	AC 120 V Adaptor (Output : DC 5.0V//2.0A)
Number of channels	2 402 MHz ~ 2 480 MHz (LE): 40ch
	2 412 MHz \sim 2 462 MHz (11n_HT20): 11ch
	2 422 MHz \sim 2 452 MHz (11n_HT40) : 7ch
	5 180 MHz \sim 5 240 MHz (11a/n_HT20, 11ac_VHT20) : 4ch
	5 190 MHz \sim 5 230 MHz (11a/n_HT40, 11ac_VHT40) : 2ch
	5 210 M地 (11ac_VHT80): 1ch
	5 260 MHz \sim 5 320 MHz (11a/n_HT20, 11ac_VHT20) : 4ch
	5 270 MHz \sim 5 310 MHz (11a/n_HT20, 11ac_VHT40) : 2ch
	5 290 M地 (11ac_VHT80): 1ch
	5 500 MHz \sim 5 720 MHz (11a/n_HT20, 11ac_VHT20) : 12ch
	5 510 MHz \sim 5 710 MHz (11a/n_HT20, 11ac_VHT40) : 6ch
	5 530 MHz ~ 5 690 MHz (11ac_VHT80): 3ch
	5 745 MHz \sim 5 825 MHz (11a/n_HT20, 11ac_VHT20) : 5ch
	5 755 MHz ~ 5 795 MHz (11n_HT40, 11ac_VHT40): 2ch
	5 775 Mtz (11ac_VHT80): 1ch

1.2. Test configuration

The Hanwha Techwin Co., Ltd. WISENET SMARTCAM FCC ID: NLMSNHP6415BN,

<u>IC: 21482-SNHP6415BN</u> was tested according to the specification of EUT, the EUT must comply with following standards and KDB documents.

FCC Part 15.247 ISED RSS-247 Issue 2 and RSS-Gen Issue 4 KDB 558074 D01 v04 ANSI C63.10-2013

1.3. Information about derivative model

The difference between basic and derivative model is external color, the other circuit diagram and software are fundamentally the same.

- Basic model(SNH-P6415BN): Metal braket, White color
- Derivative model(SNH-P6416BN): Metal braket, Black color
- Derivative model(SNH-C6415BN): Metal braket, White color
- Derivative model(SNH-C6415BNB): Metal braket, Black color
- Derivative model(SNH-C6416BN): Plastic braket White color
- Derivative model(SNH-C6416BNB): Plastic braket Black color

1.4. Accessory information

Equipment	Manufacturer	Model	Serial No.	Power source
-	-	-	-	-

1.5. Software and Firmware description

The software and firmware installed in the EUT is version 1.00 180109.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (6) of (38)

1.6. Measurement results explanation example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).
=
$$1.01 + 10 = 11.01$$
 (dB)

1.7. Measurement Uncertainty

Test Item		Uncertainty
Uncertainty for Conduction emission test		2.62 dB
Uncertainty for Radiation emission test (include Fundamental emission)	9kHz - 30MHz	4.54 dB
	30MHz - 1GHz	4.36 dB
	Above 10Hz	5.00 dB

Note. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.8. Frequency/channel operations

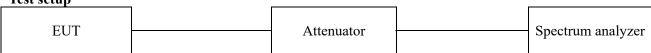
Ch.	Frequency (Mz)	Rate(Mbps)
01	2 402	1
20	2 442	1
39	2 480	1

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (7) of (38)

2. Summary of tests

Section in FCC Part 15	Section in RSS-247 & Gen	Parameter	Test results
-	RSS-Gen 6.6	99% occupied bandwidth	Pass
15.247(a)(2)	RSS-247 5.2 (a)	6 dB bandwidth	Pass
15.247(b)(3)	RSS-247 5.4 (d)	Output power	Pass
15.247(e)	RSS-247 5.2 (b)	Power spectral density	Pass
15.205 15.209	RSS-247 5.5 RSS-Gen 8.9, 8.10	Radiated restricted band and emission	Pass
15.247(d)	RSS-247 5.5	Conducted spurious emission and band edge	Pass
15.207(a)	RSS-Gen 8.8	AC conducted emissions	Pass

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (8) of (38)

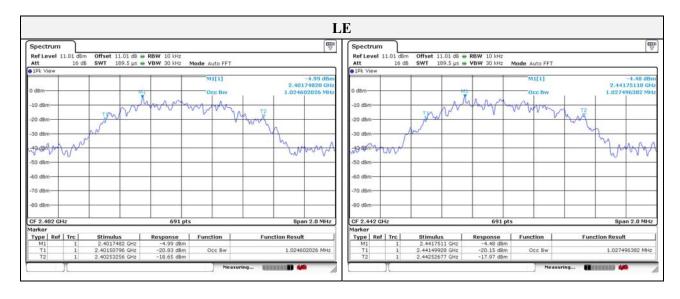

3. Test results

3.1. 99% Occupied Bandwidth

Test procedure

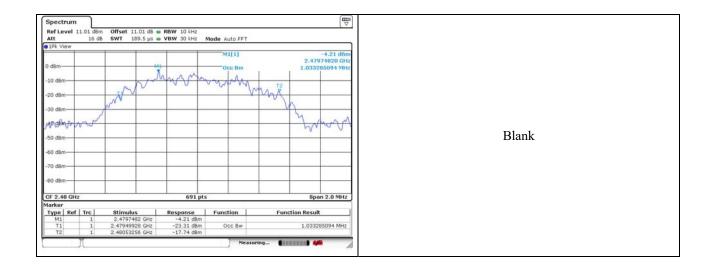
ANSI C63.10-2013

Test setup



Limit

None; for reporting purpose only.


Test results

Frequency(Mz)	99% occupied bandwidth(Mz)	Limit(Mbz)
2 402	1.025	
2 442	1.027	-
2 480	1.033	

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (9) of (38)

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (10) of (38)

3.2. 6 dB bandwidth

Test procedure

KDB 558074 D01 v04 – Section 8.1 or 8.2 Used test method is section 8.1.

EUT Attenuator Spectrum analyzer

Section 8.1

- 1. RBW = 100 kHz.
- 2. $VBW \ge 3 \times RBW$.
- 3. Detector = peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Section 8.2

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3 \times RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

Limit

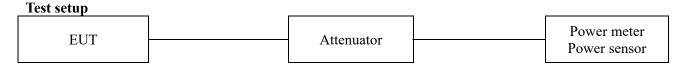
According to $\S15.247(a)(2)$, systems using digital modulation techniques may operate $902 \sim 928\,$ MHz, $2\,400 \sim 2\,483.5\,$ MHz, and $5\,725 \sim 5\,850\,$ MHz bands. The minimum 6 dB bandwidth shall be at least $500\,$ kHz.


According to RSS-247 5.2 (a), the minimum 6 dB bandwidth shall be 500 kHz.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (11) of (38)

Test results

Frequency(Mz)	6 dB bandwidth(짼)	Limit(Mb)
2 402	0.718	
2 442	0.718	0.5
2 480	0.755	



3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (12) of (38)

3.3. Output power

Test procedure

KDB 558074 D01 v04 – section 9.1.1 or 9.1.3 and 9.2.3.2 Used test method is section 9.1.3, 9.2.3.2

Section 9.1.1

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- 1. Set the RBW \geq DTS bandwidth.
- 2. Set $VBW \ge 3 \times RBW$.
- 3. Set span \geq 3 \times RBW
- 4. Sweep time = auto couple
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. Allow trace to fully stabilize
- 8. Use peak marker function to determine the peak amplitude level

Section 9.1.3

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

Section 9.2.3.2

Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle corection is required.

Limit

According to §15.247(b)(3), For systems using digital modulation in the 902~928 Mz, 2 400~2 483.5 Mz, and 5 725~5 850 Mz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted out-put power. Maximum Conducted Out-put Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to §15.247(b)(4), The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmit-ting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (13) of (38)

According to RSS-247 5.4 (d), For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in Section 5.4(e).

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (14) of (38)

Test results

Frequency(MHz)	Peak output power(dBm)	Average output power(dBm)	Limit(dBm)
2 402	4.61	4.17	
2 442	5.34	4.88	30
2 480	5.42	4.98	

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (15) of (38)

3.4. Power spectral density

Test procedure

KDB 558074 D01 v04- section 10.2

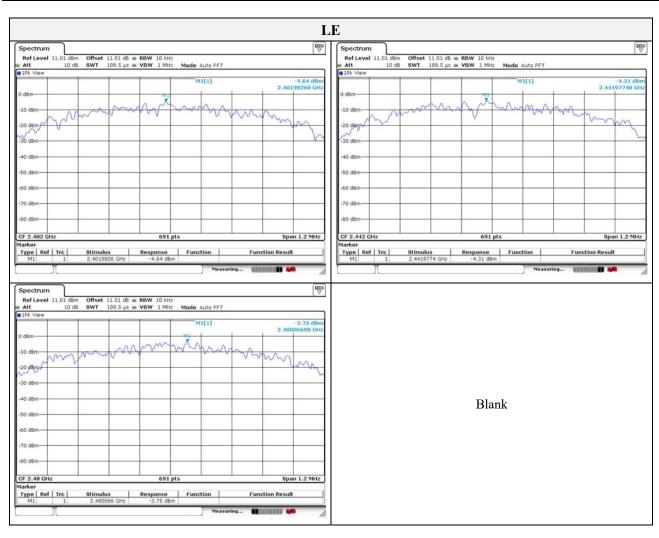
EUT Attenuator Spectrum analyzer

Section 10.2

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW : 3 kHz \leq RBW \leq 100 kHz
- 4. Set the VBW $> 3 \times RBW$.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW(no less than 3 kHz) and repeat.

Limit

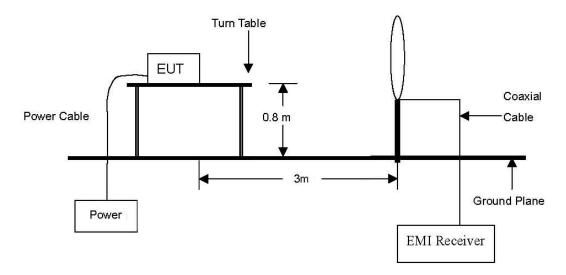
According to §15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

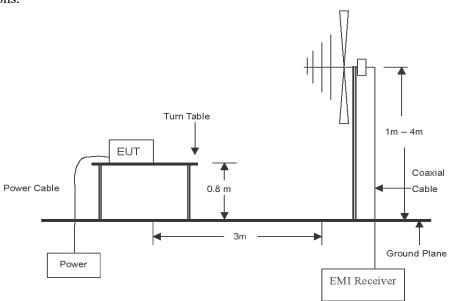

According to RSS-247 5.2 (b), The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of Section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (16) of (38)

Test results

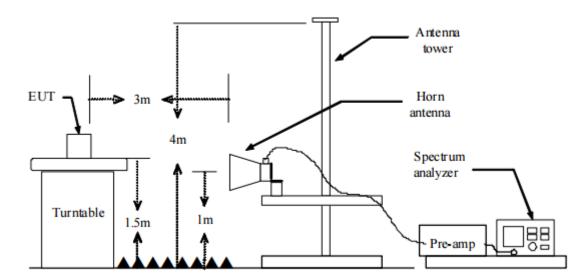
Frequency(Mz)	PSD (dBm)	Limit(dBm)
2 402	-4.64	
2 442	-4.31	8
2 480	-3.75	




3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (17) of (38)

3.5. Radiated restricted band and emissions Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.


The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (18) of (38)

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz emissions, whichever is lower.

Test procedure below 30 Mbz

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum hold mode.

Test procedure above 30 Mbz

- 1. Spectrum analyzer settings for f < 1 GHz:
 - ① Span = wide enough to fully capture the emission being measured
 - (2) RBW = 100 kHz
 - $3 \text{ VBW} \geq \text{RBW}$
 - 4 Detector = quasi peak
 - ⑤ Sweep time = auto
 - \bigcirc Trace = max hold
- 2. Spectrum analyzer settings for $f \ge 1$ GHz: Peak
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - ② RBW = 1 Mb
 - \bigcirc VBW \geq 3 MHz
 - 4 Detector = peak
 - ⑤ Sweep time = auto
 - 6 Trace = max hold
 - 7 Trace was allowed to stabilize

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (19) of (38)

- 3. Spectrum analyzer settings for $f \ge 1$ GHz: Average
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - \bigcirc RBW = 1 Mbz
 - \bigcirc VBW \geq 3 × RBW
 - ① Detector = RMS, if span/(# of points in sweep) \leq (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
 - (5) Averaging type = power(i.e., RMS)
 - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - 2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
 - \bigcirc Sweep = auto
 - \bigcirc Trace = max hold
 - 8 Perform a trace average of at least 100 traces.
 - A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (RMS) mode was used in step 5, then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.
 - 2) If linear voltage averaging mode was used in step \bigcirc 5, then the applicable correction factor is $20 \log(1/x)$, where x is the duty cycle.
 - 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Note.

1. f < 30 MHz, extrapolation factor of 40 dB/decade of distance. $F_d = 40log(D_m/Ds)$ $f \ge 30$ MHz, extrapolation factor of 20 dB/decade of distance. $F_d = 20log(D_m/Ds)$ Where:

 F_d = Distance factor in dB

 $D_{\rm m}$ = Measurement distance in meters

 D_s = Specification distance in meters

- 3. CF(Correction factors(dB)) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) + or F_d(dB)
- 4. Field strength($dB\mu V/m$) = Level($dB\mu V$) + CF (dB) + or DCF(dB)
- 5. Margin(dB) = Limit(dB μ V/m) Field strength(dB μ V/m)
- 6. Emissions below 18 © were measured at a 3 meter test distance while emissions above 18 © were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z, it was determined that <u>Y orientation</u> was worst-case orientation; therefore, all final radiated testing was performed with the EUT in <u>Y orientation</u>.
- 8. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.
- 9. According to exploratory test no any obvious emission were detected from 9kllz to 30Mlz. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (20) of (38)

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (Mz)	Distance (Meters)	Radiated (µV/m)
0.009 ~ 0.490	300	2400/F(kHz)
0.490 ~ 1.705	30	24000/F(kllz)
1.705 ~ 30.0	30	30
30 ~ 88	3	100**
88 ~ 216	3	150**
216 ~ 960	3	200**
Above 960	3	500

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54 \sim 72\,$ Mb, $76 \sim 88\,$ Mb, $174 \sim 216\,$ Mb or $470 \sim 806\,$ Mb. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections $15.231\,$ and $15.241.\,$

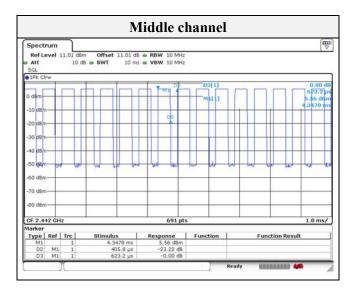
According to RSS-Gen, Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits:

Frequency (MHz)	Distance (Meters)	Radiated (μV/m)
0.009 ~ 0.490	300	2 400 / F(kllz)
0.490 ~ 1.705	30	24 000 / F(kllz)
1.705 ~ 30.0	30	30
30 ~ 88	3	100
88 ~ 216	3	150
216 ~ 960	3	200
Above 960*	3	500

^{*} Unless otherwise specified, for all frequencies greater than 1 GHz, the radiated emission limits for licence-exempt radio apparatus stated in applicable RSSs (including RSS-Gen) are based on measurements using a linear average detector function having a minimum resolution bandwidth of 1 MHz. If an average limit is specified for the EUT, then the peak emission shall also be measured with instrumentation properly adjusted for such factors as pulse desensitization to ensure the peak emission is less than 20 dB above the average limit.

Note: Transmitting devices are not permitted in restricted frequency bands unless stated otherwise in the specific RSS.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (21) of (38)


Duty cycle

Regarding to KDB 558074 D01_v04, 6.0, the maximum duty cycles of all modes were investigated and set the spectrum analyzer as below.

Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100.

Ton time (ms)	Period (ms)	Duty cycle (Linear)	Duty cycle (%)	Minimum VBW (kHz)	Duty cycle correction factor (dB)
0.405 8	0.623 2	0.651 2	65.12	2.46	1.86

Duty cycle (Linear) = T_{on} time/Period Minimum VBW(kHz) = $1/T_{on}$, where T is on time in second DCF(Duty cycle correction factor (dB)) = $10log(1/duty\ cycle)$

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (22) of (38)

Test results (Below 30 Mb)

Mode: BLE

Distance of measurement: 3 meter

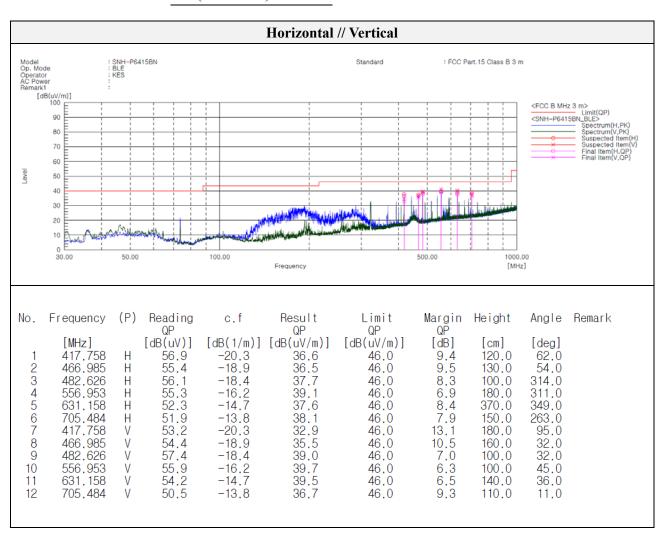
Channel: 40 (Worst case)

Frequency (MHz)	Level (dBµV)	Ant. Pol. (H/V)	CF (dB)	F _d (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
No spurious emissions were detected within 20 dB of the limit								

Horizontal

Vertical

| Spectrum | Spectrum


3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (23) of (38)

Test results (Below 1 000 Mb) - Worst case

Mode: BLE

Distance of measurement: 3 meter

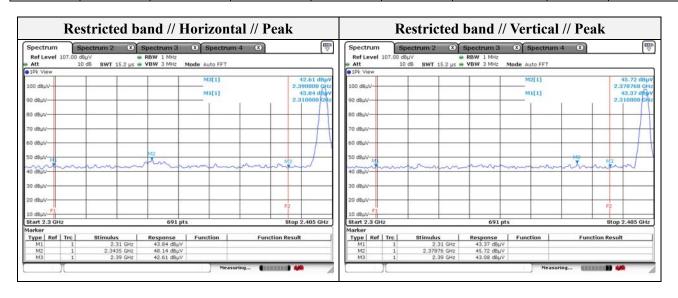
Channel: 40 (Worst case)

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (24) of (38)

Test results (Above 1 000 Mb)

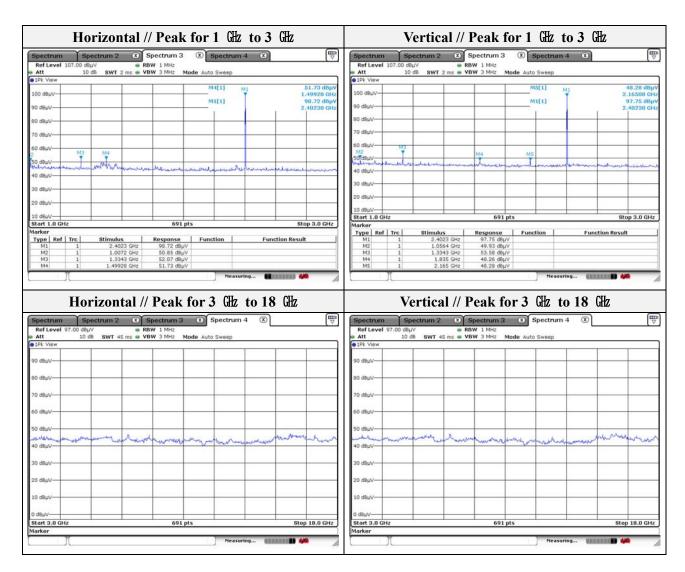
Mode: BLE

Distance of measurement: 3 meter


Channel: 00

- Spurious

Frequency (MHz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµV/m)	Margin (dB)
1 007.20	50.85	Peak	Н	-9.09	-	41.76	74.00	32.24
1 334.30	52.07	Peak	Н	-7.00	-	45.07	74.00	28.93
1 499.28	51.73	Peak	Н	-5.98	-	45.75	74.00	28.25
1 056.40	49.93	Peak	V	-8.78	-	41.15	74.00	32.85
1 334.30	53.58	Peak	V	-7.00	-	46.58	74.00	27.42
1 835.00	48.26	Peak	V	-2.71	-	45.55	74.00	28.45
2 165.00	48.28	Peak	V	-0.64	-	47.64	74.00	26.36


- Band edge

Frequency (MHz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2 343.50	48.14	Peak	Н	-0.31	-	47.83	74.00	26.17
2 378.76	45.72	Peak	V	-0.24	-	45.48	74.00	28.52

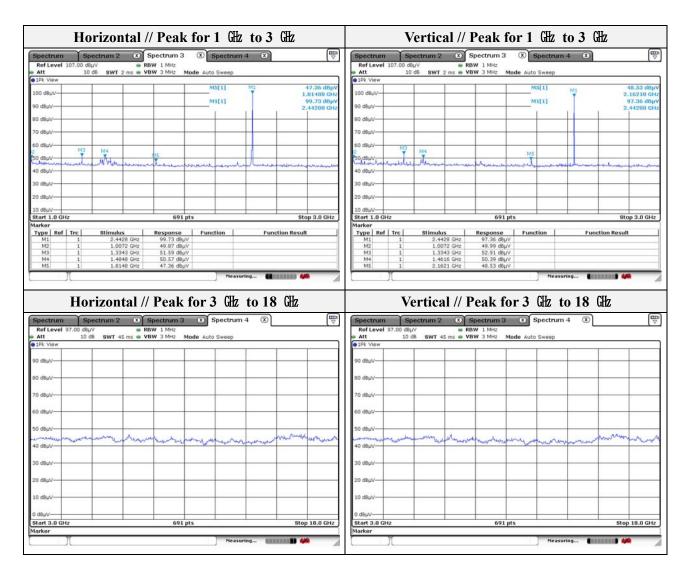
3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (25) of (38)

Note.

- 1. No spurious emission were detected above 3 GHz.
- 2. Average test would be performed if the peak result were greater than the average limit.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (26) of (38)

Mode:	BLE
Distance of measurement:	3 meter
Channel:	20


- Spurious

Frequency	Level	_	Ant. Pol.	CF	DCF	Field strength	Limit	Margin
(M±z)	$(dB\mu V)$	Detect mode	(H/V)	(dB)	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)
1 007.20	49.87	Peak	Н	-9.09	-	40.78	74.00	33.22
1 334.30	51.59	Peak	Н	-7.00	-	44.59	74.00	29.41
1 484.80	50.57	Peak	Н	-6.07	-	44.50	74.00	29.50
1 814.80	47.36	Peak	Н	-2.92	-	44.44	74.00	29.56
1 007.20	49.99	Peak	V	-9.09	-	40.90	74.00	33.10
1 334.30	52.91	Peak	V	-7.00	-	45.91	74.00	28.09
1 461.60	50.39	Peak	V	-6.21	-	44.18	74.00	29.82
2 162.10	48.53	Peak	V	-0.65	-	47.88	74.00	26.12

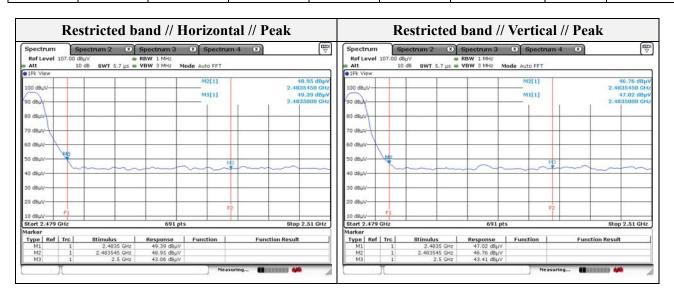
KES-P-5101-14 Rev. 5 KES A4

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (27) of (38)

Note.

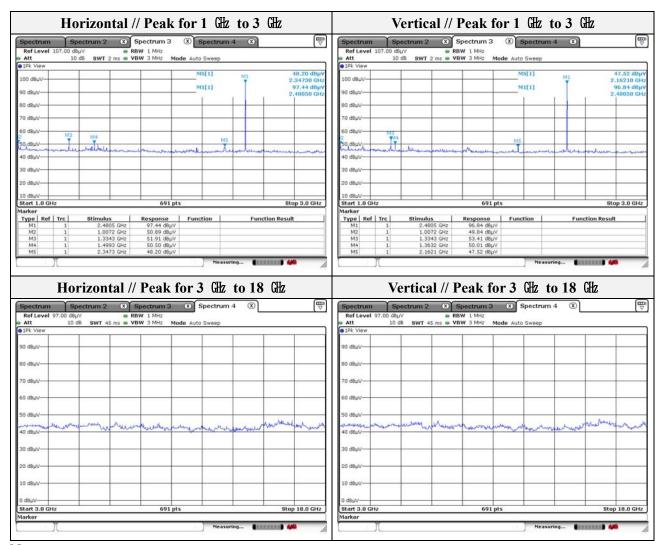
- 1. No spurious emission were detected above 3 GHz.
- 2. Average test would be performed if the peak result were greater than the average limit.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (28) of (38)


Mode: BLE
Distance of measurement: 3 meter
Channel: 39

- Spurious

Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1 007.20	50.89	Peak	Н	-9.09	-	41.80	74.00	32.20
1 334.30	51.91	Peak	Н	-7.00	-	44.91	74.00	29.09
1 499.30	50.50	Peak	Н	-5.98	-	44.52	74.00	29.48
2 347.30	48.20	Peak	Н	-0.30	-	47.90	74.00	26.10
1 007.20	49.84	Peak	V	-9.09	-	40.75	74.00	33.25
1 334.30	53.41	Peak	V	-7.00	-	46.41	74.00	27.59
1 363.20	50.01	Peak	V	-6.81	-	43.20	74.00	30.80
2 162.10	47.52	Peak	V	-0.65	-	46.87	74.00	27.13

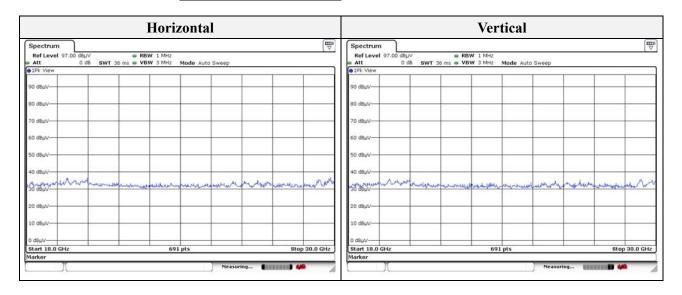

- Band edge

- Dand Cage									
	Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	2 483.50	49.39	Peak	Н	-0.05	-	49.34	74.00	24.66
	2 483.50	47.02	Peak	V	-0.05	-	46.97	74.00	27.03

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (29) of (38)

Note.

- 1. No spurious emission were detected above 3 趾.
- 2. Average test would be performed if the peak result were greater than the average limit.


3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (30) of (38)

Test results (18 GHz to 30 GHz) - Worst case

Mode: BLE

Distance of measurement: 3 meter

Channel: 40 (Worst case)

Note.

1. No spurious emission were detected above 18 GHz.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (31) of (38)

3.6 Conducted	spurious	emissions	&	band	edge
---------------	----------	-----------	---	------	------

Test setup	_		<u></u>	
EUT		Attenuator		Spectrum analyzer

Test procedure

Band edge

KDB 558074 D01 v04 - Section 11.3

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100 kHz
- 4. VBW = 300 kHz
- 5. Detector = Peak
- 6. Trace mode = max hold
- 7. Sweep time = auto
- 8. The trace was allowed to stabilize

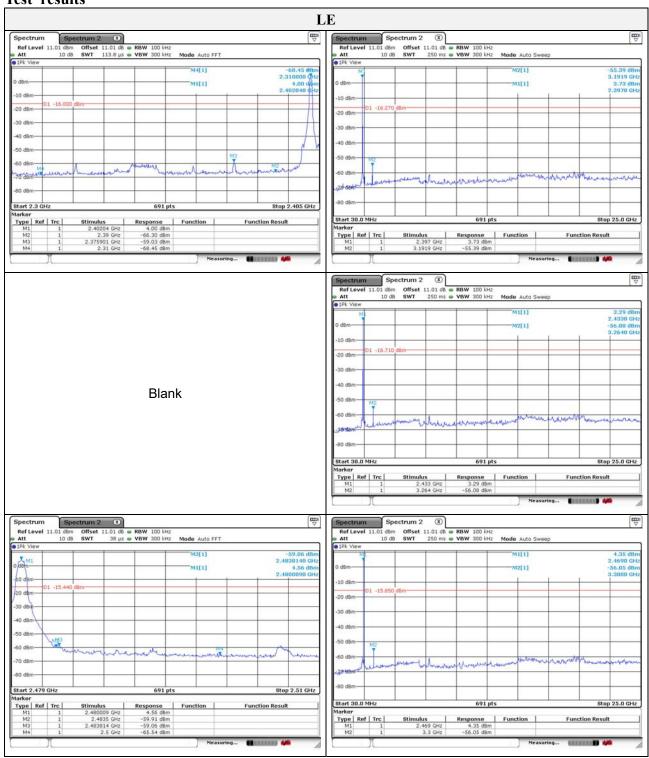
Out of band emissions

KDB 558074 D01 v04 - Section 11.3

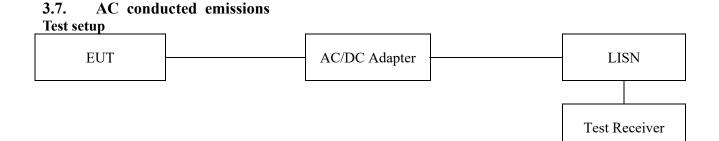
- 1. Start frequency was set to 30 MHz and stop frequency was set to 25 GHz for 2.4 GHz frequencies and 40 GHz for 5 GHz frequencies
- 2. RBW = 100 kHz
- 3. VBW = 300 kHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Limit

According to 15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section 15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section 15.205(a), must also comply the radiated emission limits specified in section 15.209(a) (see section 15.205(c))


3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (32) of (38)

According to RSS-247 5.5, In any 100 kHz bandwidth outside the frequency band in which the spr ead spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the t ransmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time inter val, as permitted under Section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. At tenuation below the general field strength limits specified in RSS-Gen is not required.


3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (33) of (38)

Test results

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (34) of (38)

Limit

According to 15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.

Everyoner of Emission (Mir)	Conducted limit (dBµV/m)				
Frequency of Emission (姫)	Quasi-peak	Average			
0.15 - 0.50	66 - 56*	56 - 46*			
0.50 - 5.00	56	46			
5.00 – 30.0	60	50			

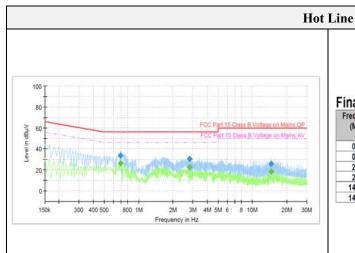
3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (35) of (38)

According to RSS-Gen 8.8, a radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz-30 MHz, shall not exceed the limits in Table 3. Unless the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in Table 3 below. The more stringent limit applies at the frequency range boundaries.

Evaguator of Emission (Mg)	Conducted limit (dBµV/m)			
Frequency of Emission (脏)	Quasi-peak	Average		
0.15 - 0.50	66 - 56*	56 - 46*		
0.50 - 5.00	56	46		
5.00 – 30.0	60	50		

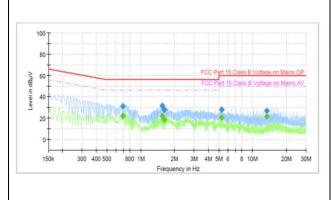
^{*} The level decreases linearly with the logarithm of the frequency.

Note:


- 1. All AC line conducted spurious emission are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and the appropriate frequencies. All data rates and modes were investigated for conducted spurious emission. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.
- 2. Both Cable loss and LISN factor are included in measurement level(QP Level or AV Level).

^{*} A linear average detector is required.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (36) of (38)


Test results

Final Result

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
0.690000		26.74	46.00	19.26	1000.0	9.000	L1	19.7
0.690000	34.02		56.00	21.98	1000.0	9.000	L1	19.7
2.790000		22.79	46.00	23.21	1000.0	9.000	L1	20.0
2.790000	30.64		56.00	25.36	1000.0	9.000	L1	20.0
14.560000		18.77	50.00	31.23	1000.0	9.000	L1	19.9
14.560000	26.05		60.00	33.95	1000.0	9.000	L1	19.9

Neutral Line

Final_Result

(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	Time (ms)	(kHz)	Line	(dB)
0.695000		22.14	46.00	23.86	1000.0	9.000	N	19.7
0.695000	31.08		56.00	24.92	1000.0	9.000	N	19.7
1.550000		22.44	46.00	23.56	1000.0	9.000	N	19.9
1.550000	31.65		56.00	24.35	1000.0	9.000	N	19.9
1.615000		18.35	46.00	27.65	1000.0	9.000	N	19.9
1.615000	27.95		56.00	28.05	1000.0	9.000	N	19.9
5.270000		20.88	50.00	29.12	1000.0	9.000	N	19.9
5.270000	28.28		60.00	31.72	1000.0	9.000	N	19.9
13.325000		21.78	50.00	28.22	1000.0	9.000	N	19.8
13.325000	27.09		60.00	32.91	1000.0	9.000	N	19.8

age Limit Margin Meas Bandwidth Line Corr

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0005-R1 Page (37) of (38)

Appendix A. Measurement equipment

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum Analyzer	R&S	FSV30	101389	1 year	2018.01.23
Spectrum Analyzer	R&S	FSV40	101002	1 year	2018.07.04
8360B Series Swept Signal Generator	НР	83630B	3844A00786	1 year	2018.01.23
Power Meter	Anritsu	ML2495A	1438001	1 year	2018.01.23
Pulse Power Sensor	Anritsu	MA2411B	1339205	1 year	2018.01.23
Attenuator	Agilent	8493C	82506	1 year	2018.01.23
Loop Antenna	Schwarzbeck	FMZB1513	225	2 years	2019.05.10
Trilog-broadband antenna	SCHWARZBECK	VULB 9163	9168-714	2 years	2018.11.28
Horn Antenna	A.H	SAS-571	414	2 years	2019.02.15
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA 9170550	2 years	2019.02.15
High Pass Filter	Wainwright Instrument Gmbh	WHJS3000-10TT	1	1 year	2018.07.03
Low Pass Filter	Wainwright Instrument Gmbh	WLK1.0/18G-10TT	1	1 year	2018.07.03
Preamplifier	HP	8449B	3008A00538	1 year	2018.01.19
Preamplifier	AGILENT	8449B	3008A01729	1 year	2018.05.31
EMI Test Receiver	R&S	ESR3	101781	1 year	2018.04.27
EMI Test Receiver	R&S	ESU26	100552	1 year	2018.04.19
Pulse Limiter	R&S	ESH3-Z2	101915	1 year	2018.11.27
LISN	R&S	ENV216	101787	1 year	2018.01.11

Peripheral devices

Device	Manufacturer	Model No.	Serial No.	
-	-	-	-	